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Abstract

We develop and provide Python code and a website to statistically an
alyze seedings in elimination tournaments. We are able to apply this 
code to fifty-eight thousand games to estimate the probability of an upset 
solely as a logistic function of the difference in seeding. We are also able 
to examine how well or poorly a team performs compared to its seed
ing. We conclude that the only team that is consistently underrated is 
\your_favorite_team, while the only team that is consistently overrated 
is \your_hated_rival.

Keywords— logistic regression, statistical analysis, elimination tournament, Python, 
data visualization

Introduction
A notable occurrence during the 2024 NCAA Division I Men’s Basketball Tour
nament (commonly known as March Madness) was that #11 North Carolina 
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State reached the Final Four, beating teams seeded 6, 14, 2, and 4. Another 
notable occurrence was that the only upset in the first round of the women’s 
tournament was by #11 Middle Tennessee. We will estimate that the probabil
ity of the first was 1.3%, while the probability of the second was 2.4%.

Bracket construction has been analyzed by Schwenk [1] and Seltzer and 
Simonson [2], while Wittry [3] examined upsets in the tournament. Making 
accurate upset predictions is popular and profitable (see Chartier [4] and the 
papers at Jacobson [5]), so that a driver of statistical research over the past 
few years has been to analyze teams’ performance throughout the season in 
order to predict more accurately than others how each team will perform in the 
tournament.

We will develop and provide Python code to analyze how teams have per
formed over the years in these tournaments. Because a team’s performance will 
vary from year to year, we will compare how a team performed with how they 
were seeded in a particular tournament (which we use to approximate how they 
were anticipated to perform). Because we provide the code for this analysis, the 
interested reader will be able to repeat or extend our analysis at their leisure.

NCAA Division I Basketball Tournament
The modern partition of NCAA men’s basketball into three divisions began in 
1974, with seeding beginning in 1978. For the years since, each tournaments’ 
outcomes are in the Wikipedia page “[Year] NCAA Division I [men’s|women’s] 
basketball tournament” (the gender was added in 1982 when the NCAA began 
sponsoring the women’s tournament). We are able to use Pywikibot [6] to 
automatically download these pages for further analysis (we will also cache these 
pages to reduce the network load). While Wikipedia renders a tournament as 
in Figure 1, the source for this bracket is

. . .
| RD1−seed01=1
| RD1−team01= ’ ’ ’[[2022 −23 Alabama Crimson Tide men’ s basketball team|Alabama] ] ’ ’ ’
| RD1−score01 = ’ ’ ’96 ’ ’ ’
| RD1−seed02=16
| RD1−team02= [[2022−23 Texas A&M−Corpus Christi Islanders men’ s basketball team|

Texas A&M−Corpus Christi ] ]
| RD1−score02=75

| RD1−seed03=8
| RD1−team03= ’ ’ ’[[2022 −23 Maryland Terrapins men’ s basketball team|Maryland ] ] ’ ’ ’
| RD1−score03 = ’ ’ ’67 ’ ’ ’
| RD1−seed04=9
| RD1−team04= [[2022−23 West Virginia Mountaineers men’ s basketball team|West

Virginia ] ]
| RD1−score04=65

| RD1−seed05=5
| RD1−team05= ’ ’ ’[[2022 −23 San Diego State Aztecs men’ s basketball team|San Diego

State ] ] ’ ’ ’
| RD1−score05 = ’ ’ ’63 ’ ’ ’
| RD1−seed06=12
| RD1−team06= [[2022−23 College of Charleston Cougars men’ s basketball team|

Charleston ] ]
| RD1−score06=57

2



Figure 1: Tournament bracket as seen in Wikipedia [7]
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(a) Men’s. 𝛽 = 0.161
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(b) Women’s. 𝛽 = 0.279

Figure 2: Seed differential versus fraction of games that a favored team wins 
in the NCAA Division I basketball tournament, with 95% Wilson confidence 
intervals and the logistic best fit. Identical seed differentials have been slightly 
spread to avoid overlap.

| RD1−seed07=4
| RD1−team07=[[2022−23 Virginia Cavaliers men’ s basketball team| Virginia ] ]
| RD1−score07=67
| RD1−seed08= 13
| RD1−team08= ’ ’ ’[[2022 −23 Furman Paladins men’ s basketball team|Furman] ] ’ ’ ’
| RD1−score08 = ’ ’ ’68 ’ ’ ’
. . .

Each line begins with “| RD#-[seed|team|score]##”, where the first number 
indicates the round, and the second numbers the teams within that round; 
teams numbered 2𝑛 − 1 and 2𝑛 will play each other. Combining these results, 
we determine how often teams with a given seeding are victorious in 2833 (men’s 
tournament) and 2372 (women’s tournament) games through the year 2024. In 
Figure 2, we plot the fraction of games that the favored team wins as a function 
of the seed differential, along with their 95% confidence intervals (using the 
Wilson interval [8]). 

We also plot the logistic best fits (determined using Python’s Scikit [9]). 
Letting 𝑌 = 1 for victory, 𝑌 = 0 for defeat, and 𝑆 denote the seed differential 
of a game, the average log-likelihood ̄ℓ is the expected value of 𝑌 ln 𝑝(𝑆) +
(1 − 𝑌 ) ln(1 − 𝑝(𝑆)). The logistic function is the function of the form 𝑝(𝑥) =
(1 + exp(−𝛽𝑥 − 𝛽𝜇))−1 that maximizes ̄ℓ. We find that 𝛽 = 0.161 for the men’s 
tournament, and 𝛽 = 0.279 for the women’s. Because a win for a given seed 
differential corresponds to a loss for that negated seed differential, the logistic 
curves are symmetric about (0, 0.5), so that 𝜇 = 0, and we only plot the curve 
for nonnegative seed differentials. The confidence intervals do not inspire much 
confidence in this best fit, but we will be able to add more data as we proceed 
with our analysis.
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Table 1: Fraction of time that the favored team wins in the second round, after 
one first round upset. (Minimum 10 games.)

 Seeds Men’s (%) Women’s (%)
 1 v 9 89 ± 6 93 ± 5
 2 v 10 62 ± 11 84 ± 9
 3 v 11 67 ± 11 69 ± 13
 4 v 12 70 ± 13 82 ± 13
 5 v 13 80 ± 15
 6 v 14 80 ± 16
 overall 75 ± 5 85 ± 5

Figure 2 prediction 78.4 90.3

A 𝛽 that is 70% larger in the women’s tournament than the men’s tourna
ment indicates that dramatic upsets are much less likely to occur. In the men’s 
tournament, upsets with a seed differential of 7 or more occurred 238 times out 
of 1286 games, or 19% of the time. In the women’s tournament, upsets with 
a seed differential of 7 or more occurred 76 times out of 953 games, or 8% of 
the time. A Fisher test shows that such upsets are more likely in the men’s 
tournament (𝑝 = 2.5 × 10−13).

With 𝛽 = 0.279 and 𝑝(𝑥) = (1 + exp(−𝛽𝑥))−1, we are able to perform a 
calculation from the introduction. The probability 𝑃 that there are no upsets 
in the first round of the women’s tournament is ∏8

𝑖=1 𝑝(2𝑖 − 1)4 ≈ 0.29%. The 
probability that the only upset is a single seed 𝑘 (losing to a seed 17 − 𝑘) is 
𝑃 ⋅ 𝑝(17 − 2𝑘)−4 ⋅ 4𝑝(17 −2𝑘)3(1− 𝑝(17 − 2𝑘)) = 4𝑃 ⋅ (1 −𝑝(17 −2𝑘))/𝑝(17 −2𝑘). 
Therefore, the probability that there is at most one upset in the first round is

𝑃 +
8

∑
𝑘=1

4𝑃1 − 𝑝(17 − 2𝑘)
𝑝(17 − 2𝑘)

≈ 2.4%.

We are interested in the question of how a team performs in a game af
ter an upset win. Are they tired from having over-exerted themselves, more 
experienced from having won a tournament game, or better than previously 
appreciated because we can now condition on them beating a supposedly supe
rior opponent? As shown in [2], seed pairings must appear in known rounds. 
The seeds must add to 17 if and only if the teams meet in round one. Teams 
meet in the second round if and only if the seeds add to 9 or 25 or differ by 8 
(corresponding to 0, 2, or 1 upsets in the first round). In Table 1, we examine 
the intervals from Figure 2 that correspond to the second round after one first 
round upset. The fraction of wins is slightly more in favor of an upset, but not 
significantly so. 

In 2001, the men’s tournament added a “play-in” game, where the last two 
teams to make the tournament played each other for the last spot. The play-
in game expanded to eight teams for four spots in 2011. (The NCAA initially 
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Table 2: Number of games won in first round in the men’s tournament, by seed, 
where the worse seed was (not) the winner of a play-in game. Also significance 
of the statement “Play-in winners are more likely to have an upset in their first 
round.”

 Seed 7 10 6 11 5 12 4 13 3 14 1 16  Overall
 Play-in 1 1 9 9 3 1 0 1 1 0 35 1 49 13

 Non-play-in 34 56 41 33 52 36 71 20 81 10 55 1 487 187
𝑝  0.86  0.44  0.88  0.23  1  0.63  0.91

referred to this as the first round, but later branded this the “First Four” so that 
“first round” would still refer to the round with 64 teams. We use the “later” 
terminology.) We are interested in the question of how the play-in winners 
perform in their first round game: are they tired from having played earlier in 
the week, more experienced from having played a tournament game, or better 
than previously appreciated because we can now condition on them beating 
a supposedly equivalent opponent? We are able to identify play-in games by 
looking for identically high seeded teams. We then record how the winning team 
performs in their first round game, and summarize according to their seed in 
Table 2. Each seed has 92 total games from 23 years and 4 games per seed per 
year. Of those 92, the first row of the table counts games played with play-
in winners of that seed, while the second row counts games with non-play-in 
winners. The left column of each pair counts games where the favored team 
won, while the right column counts upsets. The final row gives the significance 
that play-in winners are more likely to have an upset. Given the high 𝑝 values, 
we are unable to substantiate this claim. There is even less data for the women’s 
tournament, which has only had 12 play-in games since they were added in 2022. 

Each year, the bracket’s unveiling is met with inevitable second guessing that 
a team should be seeded differently. Fans (and foes) of a particular team will 
often claim that team over (or under) performs in the tournament, or even that 
the team consistently receives (un)favorable bias from the selection committee.

We are able to examine these claims by recording how a team performs 
each year during the tournament. But while collecting this data, we quickly 
run into a problem: the millions of Wikipedia editors (unsurprisingly) have not 
entered the team names consistently. For example, eventually we see twelve of 
the twenty four possible configurations of S[o[uth[ern]]] Conn[ecticut] [St[ate]], 
only some of which use a period for the abbreviations, that will all become 
“Southern Connecticut”. Even within a single bracket (presumably one editor), 
a team tends to have a more abbreviated name in later rounds. We will therefore 
devote a large portion of our code to normalizing the team names that appear 
by expanding most abbreviations and dropping unnecessary words, occasionally 
resulting in a team name that is slightly different than what the media and fans 
customarily use.
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Figure 3: Wins and losses (with multiplicity) in the NCAA Division I basketball 
tournament, along with the logistic regression (1 + exp(−𝛽(𝑥 − 𝜇)))−1.

Once team names have been normalized, we still have a problem of ambi
guity. We will convert “USC” to “Southern California” or “South Carolina”, 
often by looking for which mascot appears elsewhere on the page (a conference 
is also helpful). Similarly, “Saint John’s” will become “Saint John’s New York” 
or “Saint John’s Minnesota” along with scores of other disambiguations. (Even 
after normalization and disambiguation, we still needed to correct many mis
spellings and other typos within Wikipedia. As a practical matter, we found it 
most useful to determine which state a team was from, and then examine why 
our code had trouble determining the state of a particular team.)

Within our sample, UNC (now North Carolina) has played the most men’s 
tournament games at 139, while (the University of) Tennessee has played the 
most women’s tournament games at 165. Plotting the seed differences of those 
games along with whether the game was a win (106 and 130 times) or a loss (33 
and 35 times) along with the logistic regressions gives Figure 3. 

The logistic function (1 + exp(−𝛽(𝑥 − 𝜇)))−1 for 𝛽 = 0.194 and 𝜇 = −2.60
suggests that UNC performs about 2.60 seedings better than expected and that 
the log of their odds against an evenly seeded opponent is −𝛽𝜇 = 0.504, while 
𝛽 = 0.314 and 𝜇 = −1.92 suggests that Tennessee performs about 1.92 seedings 
better and has log odds of 0.603. The larger 𝛽 also indicates that Tennessee is 
less likely to experience an upset (for better and worse).

Of the 316 (303) teams that have participated in the men’s (women’s) tour
nament, 135 (110) have at least 10 games in the tournament and at least 1 win. 
Of these, only 7 men’s (1 women’s) teams have 𝛽 < 0.01, causing a large 𝜇. 
Repeating the calculation of 𝜇 for the remaining 128 (109) teams and plotting 
the number of games along with the team’s 𝜇 gives us Figure 4, while plotting 
the number of games along with the team’s log odds gives us Figure 5.
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(b) Women’s

Figure 4: (Logarithmic) number of games versus expected reseeding in each 
NCAA Division I basketball tournament.
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Figure 5: (Logarithmic) number of games versus logarithm of odds against an 
evenly matched opponent in each NCAA Division I basketball tournament.
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(a) Men’s, omitting DE (0-7); HI (1-4); 
ND (2-5); SD (0-6); AK, ME, NH (all 0-
0).
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(b) Women’s, omitting AK (0-0), DE (3-
6), HI (1-8), ID (0-14), NH (0-7), ND (0-
1), RI (2-7), VT (1-7), WY (0-2).

Figure 6: (Logarithmic) number of games versus expected reseeding in each 
NCAA Division I basketball tournament, grouped by state.
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(a) Men’s, omitting Alaska (0-0) and 
Hawaii (1-4).
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(b) Women’s, omitting Alaska (0-0) and 
Hawaii (1-8).

Figure 7: (Logarithmic) number of games versus expected reseeding in each 
NCAA Division I basketball tournament, grouped by timezone.

We observe a slight negative trend of reseeding for the teams that have a 
large number of games (the right most four men’s teams are perennial contenders 
Kentucky, Kansas, Duke, and North Carolina, while the right three women’s 
teams are Stanford, Connecticut, and Tennessee). Such teams have a large 
amount of victories against lower ranking teams, so that the logistic best fit is 
pulled up and toward a negative 𝜇. This also corresponds to a slight positive 
trend for the log odds.

Having failed to identify any bias for or against a particular team, we consider 
the possibility that a group of teams may experience some bias. We repeat the 
calculation of 𝜇 (omitting −𝛽𝜇), now grouping teams by their state in Figure 6 
and (slightly inaccurately) grouping the states by timezone in Figure 7. For 
the timezone plot, note that we include Arizona (Mountain Standard Time) 
in Mountain (Daylight) Time because the majority of the collegiate basketball 
season occurs outside of Daylight Saving Time. Also, we include Indiana in 
Eastern Time. 
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We now focus on our original example, that an 11 seed won games with 
seed differentials −5, 3, −9, and −7. For a game with seed differential 𝑠, we 
previously approximated the probability of the favored team winning by 𝑝(𝑠) =
(1 + exp(−𝛽𝑠))−1, where 𝛽 = 0.161 for this tournament. Treating these as four 
independent games would give a probability of 0.89%. We will instead argue 
that the upsets in rounds 1 and 3 indicate that the team should have been 
seeded better, making the victories in rounds 2–4 and then round 4 more likely.

Returning to the 128 men’s (109 women’s) teams, if we discard 3 (2) outliers 
where |𝜇| > 16, then we can weight the remaining 125 (107) values of 𝜇 by the 
number of games the team played to estimate that 𝜇 has a mean 𝜇0 of −0.2
(0.03) and a standard deviation 𝜎 of 3.2 (1.9). This indicates that we can instead 
assume that a better seeded team is correctly seeded, and that a worse seeded 
team should have had their seed adjusted downward by the normal random 
variable 𝑁 ∼ 𝒩(𝜇0, 𝜎2). In that case, the most likely seeding correction in 
the event of an upset would be the maximizer of the product of the probability 
density function for 𝑁 and 1 − 𝑝(𝑠 − 𝑁), which is

1
𝜎

√
2𝜋

exp{−(𝑁 − 𝜇0)2

2𝜎2 } exp(−𝛽(𝑠 − 𝑁))
1 + exp(−𝛽(𝑠 − 𝑁))

.

Differentiating with respect to 𝑁 and simplifying, this maximum occurs when 
𝑁 is the root of the nonlinear equation

𝛽
1 + exp(−𝛽(𝑠 − 𝑁))

= 𝑁 − 𝜇0
𝜎2 .

With our values of 𝛽, 𝜇0, and 𝜎, a numerical solver estimates that on 1 ≤ 𝑠 ≤ 15, 
this root is approximately 0.68 + 𝑠

25  for the men’s tournament and 0.65 + 𝑠
42  for 

the women’s tournament. This means that after an 11 seed defeats a 6 seed, we 
should instead model the 11 seed as if they had been seeded 10.12. Treating the 
last three games dependent on the first one (but independent from each other), 
we would act as if the seed differentials had been −5, 3.88, −8.12, and −6.12, 
bringing the probability up to 1.2%.

Repeating this analysis for two upsets, we would want to maximize

1
𝜎

√
2𝜋

exp{−(𝑁 − 𝜇0)2

2𝜎2 } exp(−𝛽(𝑠1 − 𝑁))
1 + exp(−𝛽(𝑠1 − 𝑁))

exp(−𝛽(𝑠2 − 𝑁))
1 + exp(−𝛽(𝑠2 − 𝑁))

,

which happens when 𝑁 solves

𝛽
1 + exp(−𝛽(𝑠1 − 𝑁))

+ 𝛽
1 + exp(−𝛽(𝑠2 − 𝑁))

= 𝑁 − 𝜇0
𝜎2 .

This root is approximately 1.43 + 𝑠1+𝑠2
24  for the men (and 1.17 + 𝑠1+𝑠2

38  for the 
women) on 1 ≤ 𝑠1, 𝑠2 ≤ 15, so that after upsets of seed differentials −5 and −9, 
we should instead model the 11 seed as if they had been seeded 9. Repeating our 
calculation with seed differentials of −5, 3.88, −8.12, and −5, the probability is 
now the previously stated 1.3%.
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Table 3: Average log-likelihood in the second round, after one first round upset, 
with and without reseeding. (Minimum 10 games.)

Seeds  Men’s  Women’s
Without With Without With

 1 v 9 −1.27 −1.20 −2.19 −2.04
 2 v 10 −0.51 −0.45 −1.88 −1.76
 3 v 11 −0.63 −0.59 −1.32 −1.22
 4 v 12 −0.75 −0.70 −1.86 −1.76
 5 v 13 −1.13 −1.10
 6 v 14 −1.18 −1.15
 overall −0.85 −0.80 −1.83 −1.71

We will now revisit the probability of an upset in the second round after an 
upset in the first, examined in light of reseeding. For a logistic function 𝑝(𝑠) =
(1+ exp(−𝛽0 −𝛽1𝑠))−1, recall that the average log-likelihood ̄ℓ is the expression 
𝑌𝑘 ln 𝑝(𝑆𝑘) + (1 − 𝑌𝑘) ln(1 − 𝑝(𝑆𝑘)) where 𝑆𝑘 is the seed differential (positive 
for a favored team) and 𝑌𝑘 is 1 in victory and 0 in defeat. The expression is 
maximized when 𝛽0 and 𝛽1 are taken from the logistic best fit (note that this 
logistic function is slightly different than ours, where 𝛽 = 𝛽1 and 𝜇 = −𝛽0/𝛽1, 
although 𝜇 = 𝛽0 = 0 because of symmetry in our case). In Table 3, we see the 
average log-likelihood for each second round matchup after a first round upset. 
Using the reseeding results in a better (less negative) average log-likelihood. 

College Basketball Tournaments
Wikipedia has brackets for many other basketball tournaments, most notably 
32 (32) different conference tournaments [with occasional changing names] often 
determining a champion for an automatic bid to the men’s (women’s) national 
tournament. There are also 7 (4) other tournaments with a national scope. We 
again begin by plotting seed differential against fraction of games won by the 
favored team in Figure 8, and then the number of games compared to how a 
team should be reseeded in Figure 9. 

We also summarize the likelihood of upsets by calculating 𝛽 for each tourna
ment, and plot the results in Figure 10. Note that national conferences generally 
have lower 𝛽 values, suggesting that upsets are more common. Within a con
ference tournament, most teams have already played each other, and a team’s 
record (which all conferences use for seeding) is a useful estimate of how good 
the team is. In a national tournament, on the other hand, most teams have 
not played each other. In this case, tournament organizers resort to (sometimes 
objective) arbitrary methods to determine seedings, but these methods are not 
as useful at estimating how good the teams are. 

To examine one conference tournament slightly more in-depth, we plot in 

11



0 5 10 15
0

0.2

0.4

0.6

0.8

1

Seed differential

Fr
ac

tio
n 

w
on

 b
y 

fa
vo

re
d

(a) Men’s. 𝛽 = 0.205
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(b) Women’s. 𝛽 = 0.285

Figure 8: Seed differential versus fraction of games that a favored team wins 
in collegiate basketball tournaments, with 95% Wilson confidence intervals and 
the logistic best fit.
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(b) Women’s

Figure 9: (Logarithmic) number of games versus expected reseeding in basket
ball tournaments.
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Figure 10: (Logarithmic) number of games versus upset rate in basketball tour
naments. National tournaments denoted with +.
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(b) Women’s

Figure 11: (Logarithmic) number of games versus expected reseeding in SEC 
basketball tournaments.
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Figure 12: (Logarithmic) number of games versus expected reseeding of con
ferences in national basketball tournaments. Unknown conferences have been 
consolidated into +.

Figure 11 the number of games versus the expected reseeding for the SEC, 
located at (517, 0.20) in Figure 10a and (253, 0.29) in Figure 10b. We again 
observe a negative reseeding bias for teams that have played the most games 
(Kentucky for the men and Tennessee for the women). This bias cannot be 
blamed on non-existent selection committees. 

We would like to calculate conferences’ expected reseeding to compare how 
conferences have performed in national tournaments over the years. Unfortu
nately, the teams in a conference have shifted, so that we cannot make a simple 
list of which teams go to which conference. Instead, for a particular year we 
will note which teams participated in which conference tournaments. Then in 
national tournaments we will record how conferences performed against each 
other in Figure 12. This approach does have the drawback that if a conference 
did not have a tournament in a particular year, then we are not able to iden
tify any teams as coming from that conference, so that we group them into an 
unknown conference. 

Wikipedia has many more tournaments to analyze. We tabulate the colle
giate tournaments in Table 4, and note that we also can perform our calculations 
on brackets from the MLB, NBA, NFL, NHL, and WNBA. Because our analysis 

13



Table 4: Tabulation of 172 collegiate tournaments with brackets in Wikipedia.

Sport  Men’s  Women’s
Conference National Conference National

 Basketball 32 8 32 5
 Baseball/softball 22 4 9 2
 Soccer 20 3 1 4
 Ice hockey 14 5 0 1
 Football 0 4 0 0
 Volleyball 0 1 0 1
 Field hockey 0 0 0 1
 Lacrosse 0 1 0 0
 Tennis 0 1 0 1
 Total 88 27 42 15

does not uncover new information, we will not repeat it here. 
We do however provide one final plot of seed differential versus fraction of 

games won in Figure 13, using the entirety of our data. In Figure 13a, we keep 
identical seed differentials separate, as our habit. In Figure 13b, we coalesce the 
seed differentials to provide a single confidence interval for each seed differential. 

Conclusions and Further Analysis
It is our hope that this analysis and its database will allow further exploration of 
tournament seeding. Consequently, the necessary Python code to reproduce our 
results is available at https://github.com/teepeemm/bracket. For the less 
programmatically minded, we provide an online interface at https://sites.
und.edu/timothy.prescott/bracket/ that can explore most of what we’ve 
done (counting wins and losses by seed differential for a particular team is more 
complicated).

Someone with experience in Python and probability or statistics would be 
able to extend this analysis in several ways. These possibilities are organized 
(we think) in order of decreasing complexity.

• Instead of collapsing seeds by only looking at the seed differential, can 
we find a probability estimation that also uses the average of the seeds? 
(Complicating this question is that the observed frequencies in Table 1 do 
not follow a clear pattern.) Does the formula become simpler if we use the 
better or worse team’s seed instead of the average? Does this probability 
estimation depend on the tournament or the size of that tournament (for 
example, prior to 1985, the men’s NCAA tournament had fewer than 64 
teams)?
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(a) Separated seed differentials.
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(b) Unified seed differentials.

Figure 13: Seed differential versus fraction of games that a favored team wins 
in their tournament, with 95% Wilson confidence intervals and the logistic best 
fit (𝛽 = 0.208).

• In the NCAA basketball tournaments, is there a significant difference for 
teams that qualified at large instead of teams that only qualified by virtue 
of winning their conference tournament? Does this question depend on 
the conference, and whether the conference is a traditional powerhouse 
conference or a “mid-major”? Can we predict a conference’s performance 
by tracking how many teams from that conference are in the tournament?

• Can we apply an intercept correction to teams with few wins in a tourna
ment, and thereby provide more samples for our database, or will we be 
artificially inflating our numbers?

• Our choice to focus on 𝜇 instead of 𝛽𝜇 means that a small 𝛽 causes a 
large 𝜇. Do we have notably different conclusions if we instead examine 
the logarithm of the odds against an evenly matched opponent, given by 
−𝛽𝜇?

Throughout the past century, conferences memberships have been in con
stant flux. Because that was usually a team or two at a time, however, it still 
makes sense to talk about a conference as a whole and how it performed. That 
is no longer true for the Pac 12, which in August 2024 exploded with 2, 4, and 
4 teams going to the ACC, Big 10 and Big 12 conferences.

In all of our examination of tournaments, conferences, and teams, we must 
admit that most teams appear to be consistently correctly rated. Further ex
ploration may show that \your_favorite_team is indeed underrated, or that 
\your_hated_rival is indeed overrated, but we must be careful to avoid tortur
ing the data and 𝑝-hacking to arrive at these results. On the other hand, we 
now have tools to examine how teams have performed throughout the history 
of numerous tournaments.
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