UND MATHEMATICS TRACK MEET Individual Test 2

University of North Dakota Grades 11/12
January 12, 2026
School Team Name
Calculators are NOT allowed. Student Name

  • 1.

    Let f be a function satisfying

    f(f(n))+f(n)=2n+3,

    and f(n) is a natural number for all natural numbers n. Find f(2026).

    (a) 2025    (b) 2026    (c) 2027    (d) 2028    (e) 2029

      (2 pts) 1.

  • 2.

    For how many integers n0 is n2+6n+5 a perfect square?

    (a) 0    (b) 1    (c) 2    (d) 3    (e) infinitely many

      (3 pts) 2.

  • 3.

    Let P(x) be a nonzero polynomial satisfying

    (x3+3x2+3x+2)P(x1)=(x33x2+3x2)P(x)

    for all real numbers x. Which is the degree of P(x)?

    (a) 2    (b) 3    (c) 4    (d) 5    (e) 6

      (3 pts) 3.

  • 4.

    Two triangles have the same perimeter. The first has side ratios 3:4:5 and the second has ratios 7:24:25. What is the ratio of their areas?

    (a) 5:7   (b) 7:5    (c) 14:9    (d) 35:32    (e) 5:4

      (3 pts) 4.

  • 5.

    Triangle ABC has area 1. A point M moves along side BC. Through M, draw a line parallel to AC meeting AB at D, and a line parallel to AB meeting AC at E. The quadrilateral ADME is a parallelogram. Find the maximum possible area of parallelogram ADME.

    (a) 1     (b) 2     (c) 1/2     (d) 3/2     (e) 3

      (3 pts) 5.

  • 6.

    A teacher has 300 identical books and wants to pack them into boxes with a different number of books in each box. What is the greatest possible number of boxes?

    (a) 23    (b) 24    (c) 25    (d) 26    (e) none of these

      (3 pts) 6.

  • 7.

    How many pairs of integers (x,y) satisfy the equation x2+y2x+y=8513?

    (a) 1    (b) 2    (c) 3    (d) 4    (e) no integer is satisfied

      (3 pts) 7.

TOTAL POINTS

Modern Campus CMS