Appendices

Important Formulas

Differentiation Rules

  1. 1.

    ddx(cx)=c

  2. 2.

    ddx(u±v)=u±v

  3. 3.

    ddx(uv)=uv+uv

  4. 4.

    ddx(uv)=vu-uvv2

  5. 5.

    ddx(u(v))=u(v)v

  6. 6.

    ddx(c)=0

  7. 7.

    ddx(x)=1

  8. 8.

    ddx(xn)=nxn-1

  9. 9.

    ddx(ex)=ex

  1. 10.

    ddx(ax)=lnaax

  2. 11.

    ddx(lnx)=1x

  3. 12.

    ddx(logax)=1xlna

  4. 13.

    ddx(sinx)=cosx

  5. 14.

    ddx(cosx)=-sinx

  6. 15.

    ddx(cscx)=-cscxcotx

  7. 16.

    ddx(secx)=secxtanx

  8. 17.

    ddx(tanx)=sec2x

  9. 18.

    ddx(cotx)=-csc2x

  1. 19.

    ddx(sin-1x)=11-x2

  2. 20.

    ddx(cos-1x)=-11-x2

  3. 21.

    ddx(csc-1x)=-1|x|x2-1

  4. 22.

    ddx(sec-1x)=1|x|x2-1

  5. 23.

    ddx(tan-1x)=11+x2

  6. 24.

    ddx(cot-1x)=-11+x2

  7. 25.

    ddx(coshx)=sinhx

  8. 26.

    ddx(sinhx)=coshx

  9. 27.

    ddx(tanhx)=sech2x

  1. 28.

    ddx(sechx)=-sechxtanhx

  2. 29.

    ddx(cschx)=-cschxcothx

  3. 30.

    ddx(cothx)=-csch2x

  4. 31.

    ddx(cosh-1x)=1x2-1

  5. 32.

    ddx(sinh-1x)=1x2+1

  6. 33.

    ddx(sech-1x)=-1x1-x2

  7. 34.

    ddx(csch-1x)=-1|x|1+x2

  8. 35.

    ddx(tanh-1x)=11-x2

  9. 36.

    ddx(coth-1x)=11-x2

Integration Rules

  1. 1.

    cf(x)dx=cf(x)dx

  2. 2.

    f(x)±g(x)dx=f(x)dx±g(x)dx

  3. 3.

    0dx=C

  4. 4.

    1dx=x+C

  5. 5.

    xndx=1n+1xn+1+C,  n-1

  6. 6.

    exdx=ex+C

  7. 7.

    axdx=1lnaax+C

  8. 8.

    1xdx=ln|x|+C

  9. 9.

    cosxdx=sinx+C

  10. 10.

    sinxdx=-cosx+C

  1. 11.

    tanxdx=-ln|cosx|+C

  2. 12.

    secxdx=ln|secx+tanx|+C

  3. 13.

    cscxdx=-ln|cscx+cotx|+C

  4. 14.

    cotxdx=ln|sinx|+C

  5. 15.

    sec2xdx=tanx+C

  6. 16.

    csc2xdx=-cotx+C

  7. 17.

    secxtanxdx=secx+C

  8. 18.

    cscxcotxdx=-cscx+C

  9. 19.

    cos2xdx=12x+14sin(2x)+C

  10. 20.

    sin2xdx=12x-14sin(2x)+C

  11. 21.

    1x2+a2dx=1atan-1(xa)+C

  12. 22.

    1a2-x2dx=sin-1(x|a|)+C

  1. 23.

    1xx2-a2dx=1asec-1(|x|a)+C

  2. 24.

    coshxdx=sinhx+C

  3. 25.

    sinhxdx=coshx+C

  4. 26.

    tanhxdx=ln(coshx)+C

  5. 27.

    cothxdx=ln|sinhx|+C

  6. 28.

    1x2-a2dx=ln|x+x2-a2|+C

  7. 29.

    1x2+a2dx=ln|x+x2+a2|+C

  8. 30.

    1a2-x2dx=12aln|a+xa-x|+C

  9. 31.

    1xa2-x2dx=1aln(xa+a2-x2)+C

  10. 32.

    1xx2+a2dx=1aln|xa+x2+a2|+C

  11. 33.

    x2+a2dx=x2x2+a2+a22ln(x+x2+a2)+C

The Unit Circle

xy00(1,0)30π/6(32,12)45π/4(22,22)60π/3(12,32)90π/2(0,1)1202π/3(-12,32)1353π/4(-22,22)1505π/6(-32,12)180π(-1,0)2107π/6(-32,-12)2255π/4(-22,-22)2404π/3(-12,-32)2703π/2(0,-1)3005π/3(12,-32)3157π/4(22,-22)33011π/6(32,-12)

Definitions of the Trigonometric Functions

Unit Circle Definition

xy(x,y)yxθ sinθ =y cosθ =x cscθ =1y secθ =1x tanθ =yx cotθ =xy

Right Triangle Definition

AdjacentOppositeHypotenuseθ sinθ =OH cscθ =HO cosθ =AH secθ =HA tanθ =OA cotθ =AO

Common Trigonometric Identities

Pythagorean Identities

sin2x+cos2x=1
tan2x+1=sec2x
1+cot2x=csc2x

Cofunction Identities

sin(π2-x) =cosx csc(π2-x) =secx
cos(π2-x) =sinx sec(π2-x) =cscx
tan(π2-x) =cotx cot(π2-x) =tanx

Double Angle Formulas

sin2x =2sinxcosx
cos2x =cos2x-sin2x
=2cos2x-1
=1-2sin2x
tan2x =2tanx1-tan2x

Sum to Product Formulas

sinx+siny =2sin(x+y2)cos(x-y2)
sinx-siny =2sin(x-y2)cos(x+y2)
cosx+cosy =2cos(x+y2)cos(x-y2)
cosx-cosy =2sin(x+y2)sin(y-x2)

Power–Reducing Formulas

sin2x =1-cos2x2
cos2x =1+cos2x2
tan2x =1-cos2x1+cos2x

Even/Odd Identities

sin(-x) =-sinx
cos(-x) =cosx
tan(-x) =-tanx
csc(-x) =-cscx
sec(-x) =secx
cot(-x) =-cotx

Product to Sum Formulas

sinxsiny =12(cos(x-y)-cos(x+y))
cosxcosy =12(cos(x-y)+cos(x+y))
sinxcosy =12(sin(x+y)+sin(x-y))

Angle Sum/Difference Formulas

sin(x±y) =sinxcosy±cosxsiny
cos(x±y) =cosxcosysinxsiny
tan(x±y) =tanx±tany1tanxtany

Areas and Volumes

Triangles

h=asinθ Area=12bh Law of Cosines: c2=a2+b2-2abcosθ
bθach

Right Circular Cone

Volume=13πr2h Surface Area= πrr2+h2+πr2
hr

Parallelograms

Area=bh
bh

Right Circular Cylinder

Volume=πr2h Surface Area= 2πrh+2πr2
hr

Trapezoids

Area=12(a+b)h
bah

Sphere

Volume=43πr3 Surface Area=4πr2
r

Circles

Area=πr2 Circumference=2πr
r

General Cone

Area of Base=A Volume=13Ah
hA

Sectors of Circles

θ in radians Area=12θr2 s=rθ
rsθ

General Right Cylinder

Area of Base=A Volume=Ah
hA

Algebra

Factors and Zeros of Polynomials

Let p(x)=anxn+an-1xn-1++a1x+a0 be a polynomial. If p(a)=0, then a is a zero of the polynomial and a solution of the equation p(x)=0. Furthermore, (x-a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula

If p(x)=ax2+bx+c, then the zeros of p are x=-b±b2-4ac2a

Special Factoring

x2-a2 =(x-a)(x+a) x3±a3 =(x±a)(x2ax+a2) x4-a4 =(x2-a2)(x2+a2)

Binomial Theorem

(x+y)2 =x2+2xy+y2 (x+y)3 =x3+3x2y+3xy2+y3
(x+y)4 =x4+4x3y+6x2y2+4xy3+y4 (x+y)n =k=0n(nk)xn-kyk

Rational Zero Theorem

If p(x)=anxn+an-1xn-1++a1x+a0 has integer coefficients, then every rational zero of p is of the form x=r/s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping

acx3+adx2+bcx+bd=ax2(cx+d)+b(cx+d)=(ax2+b)(cx+d)

Arithmetic Operations

ab+ac=a(b+c) ab+cd=ad+bcbd a+bc=ac+bc
(ab)(cd)=(ab)(dc)=adbc (ab)c=abc a(bc)=acb
a(bc)=abc a-bc-d=b-ad-c ab+aca=b+c

Exponents and Radicals

a0=1,a0 (ab)x =axbx axay =ax+y a =a1/2 axay =ax-y an =a1/n
(ab)x=axbx amn =am/n a-x =1ax abn =anbn (ax)y =axy abn =anbn

Additional Formulas

Summation Formulas

i=1nc =cn i=1ni =n(n+1)2 i=1ni2 =n(n+1)(2n+1)6 i=1ni3 =(n(n+1)2)2

Trapezoidal Rule

abf(x)dxΔx2[f(x1)+2f(x2)+2f(x3)++2f(xn)+f(xn+1)]
with Error(b-a)312n2[max|f′′(x)|]

Simpson’s Rule

abf(x)dxΔx3[f(x1)+4f(x2)+2f(x3)+4f(x4)++2f(xn-1)+4f(xn)+f(xn+1)]
with Error(b-a)5180n4[max|f(4)(x)|]


Arc Length

L=ab1+f(x)2dx


Work Done by a Variable Force

W=abF(x)dx

Force Exerted by a Fluid

F=abwd(y)(y)dy

Taylor Series Expansion for f(x)

pn(x)=f(c)+f(c)(x-c)+f′′(c)2!(x-c)2+f′′′(c)3!(x-c)3++f(n)(c)n!(x-c)n+


Standard Form of Conic Sections

Parabola                Ellipse Hyperbola
Vertical axis Horizontal axis Foci and vertices Foci and vertices
on x-axis on y-axis
y=x24p x=y24p x2a2+y2b2=1 x2a2-y2b2=1 y2b2-x2a2=1

Summary of Tests for Series

Test Series

Condition(s) of Convergence

Condition(s) of Divergence

Comment

nth-Term

Test for

Divergence

n=1an limnan0

cannot show convergence.

Alternating

Series

n=1(-1)nbn limnbn=0

bn must be positive and decreasing

Geometric

Series

n=0arn |r|<1 |r|1 Sum =a1-r

Telescoping

Series

n=1bn-bn+m limnbn=L

Sum =

(n=1mbn)-L

p-Series n=11(an+b)p p>1 p1

p-Series For

Logarithms

n=11(an+b)(logn)p p>1 p1

logarithm’s base doesn’t affect convergence.

Integral

Test

n=1an

1a(n)dn

convergesd

1a(n)dn

diverges

an=a(n) must be positive and decreasing

Direct

Comparison

n=1an

n=0bn

converges and

0anbn

n=0bn

diverges and

0bnan

Limit

Comparison

n=1an

n=0bn

converges and

limnan/bn<

n=0bn

diverges and

limnan/bn>0or =

an,bn>0
Ratio Test n=1an

limn|an+1an|<1

limn|an+1an|>1or =

limit of 1 is indeterminate

Root Test n=1an

limn|an|1/n<1

limn|an|1/n>1or =

limit of 1 is indeterminate


Omni CMS