UND MATHEMATICS TRACK MEET Individual Test 2

University of North Dakota Grades 11/12
January 12, 2026
School Team Name
Calculators are NOT allowed. Key Student Name

  • 1.

    Let f be a function satisfying

    f(f(n))+f(n)=2n+3,

    and f(n) is a natural number for all natural numbers n. Find f(2026).

    (a) 2025    (b) 2026    (c) 2027    (d) 2028    (e) 2029

      (2 pts) 1. (c)

  • 2.

    For how many integers n0 is n2+6n+5 a perfect square?

    (a) 0    (b) 1    (c) 2    (d) 3    (e) infinitely many

      (3 pts) 2. (a)

  • 3.

    Let P(x) be a nonzero polynomial satisfying

    (x3+3x2+3x+2)P(x1)=(x33x2+3x2)P(x)

    for all real numbers x. Which is the degree of P(x)?

    (a) 2    (b) 3    (c) 4    (d) 5    (e) 6

      (3 pts) 3. (e)

  • 4.

    Two triangles have the same perimeter. The first has side ratios 3:4:5 and the second has ratios 7:24:25. What is the ratio of their areas?

    (a) 5:7   (b) 7:5    (c) 14:9    (d) 35:32    (e) 5:4

      (3 pts) 4. (c)

  • 5.

    Triangle ABC has area 1. A point M moves along side BC. Through M, draw a line parallel to AC meeting AB at D, and a line parallel to AB meeting AC at E. The quadrilateral ADME is a parallelogram. Find the maximum possible area of parallelogram ADME.

    (a) 1     (b) 2     (c) 1/2     (d) 3/2     (e) 3

      (3 pts) 5. (c)

  • 6.

    A teacher has 300 identical books and wants to pack them into boxes with a different number of books in each box. What is the greatest possible number of boxes?

    (a) 23    (b) 24    (c) 25    (d) 26    (e) none of these

      (3 pts) 6. (b)

  • 7.

    How many pairs of integers (x,y) satisfy the equation x2+y2x+y=8513?

    (a) 1    (b) 2    (c) 3    (d) 4    (e) no integer is satisfied

      (3 pts) 7. (b)

Modern Campus CMS