UND MATHEMATICS TRACK MEET Individual Test 2

University of North Dakota Grades 9/10
January 12, 2026
School Team Name
Calculators are NOT allowed. Solutions Student Name

  • 1.

    What is the sum of the roots of the equation 3x+1=2x2+5x+7?

      (2 pts) 1. 4

    Solution: 2x2+8x+6=0x2+4x+3=0. The sum is 4.

  • 2.

    If 6<x<12 and 3<y<2, then a<x/y<b. What is a+b?

      (3 pts) 2. 3

    Solution: 6<x<12,1/2<1/y<1/36<x/y<3. So, a+b=3.

  • 3.

    Solve 2|x1|>13

      (3 pts) 3. 5<x<7,x1

    Solution: |x1|2<3|x1|<65<x<7,x1.

  • 4.

    Find an equation for the set of all points (x,y) that are equidistant from (0,0) and (3,1).

      (3 pts) 4. 6x+2y=10or  3x+y=5

    Solution: x2+y2=(x3)2+(y1)2x2+y2=x26x+9+y22y+16x+2y=10.

  • 5.

    For which value of k is x3+2x2+3kx+1 divisible by x1?

      (3 pts) 5. 4/3

    Solution: x3+2x2+3kx+1=(x1)(x2+3x+3k+3)+3k+4.

  • 6.

    If x<4, then |3|x+1|| is
    (a) x+1  (b) x+4  (c) x1  (d) x4  (e) None of the above

      (3 pts) 6. (d)

    Solution: |3|x+1||=|3+(x+1)|=|x+4|=(x+4).

  • 7.

    A sequence is defined by a1=1,a2=3,a3=33,,an=3an1. This sequence converges to L. What is L?

      (3 pts) 7. 3

    Solution: L=3LL2=3LL(L3)=0. Since L0, L=3.

Modern Campus CMS