Solutions To Selected Problems

Chapter 1

Exercises 1.0

  1. 1.

    (-,)

  2. 2.

    [-7,)

  3. 3.

    (-,-1][7,)

  4. 4.

    (-,)

  5. 5.

    (-,2)(2,)

  6. 6.

    (-,)

  7. 7.

    (-,)

  8. 8.

    (-,-2)(2,)

  9. 9.

    (-,0)(0,)

  10. 10.

    (-,)

  11. 11.
    -4-224-4-224xy
  12. 12.
    -4-224-4-224xy
  13. 13.
    -6-4-2246-6-4-2246xy
  14. 14.
    -6-4-2246-6-4-2246xy
  15. 15.
    (a) 14 (b) 11 (c) 3a2-2a+6 (d) 3(x+h)2-2(x+h)+6 (e) h(3h+6x-2)h
  16. 16.
    (a) 2 (b) undefined (c) t-2 (d) x+h-2 (e) x+h-2-x-2h=hh(x+h-2+x-2)
  17. 17.
    (a) -1 (b) 19 (c) 1t+3 (d) 1x+h (e) 1x+h-1xh=-hhx(x+h)
  18. 18.
    (a) e-2 (b) e3 (c) et+1 (d) ex+h (e) ex+h-exh=exeh-1h
  19. 19.

    {2.12}[2.13,2.14)(2.15,)

  20. 20.

    (-,5.677][5.678,5.679)(5.679,)

  21. 21.

    (0.3,0.8]

  22. 22.

    (0.1,0.2]

Exercises 1.1

  1. 1.

    Answers will vary.

  2. 3.

    F

  3. 5.

    1

  4. 7.

    -1

  5. 9.

    Limit does not exist

  6. 11.

    1.5

  7. 13.

    Limit does not exist.

  8. 15.

    1

  9. 17.
    h f(a+h)-f(a)h -0.1 -7 -0.01 -7 0.01 -7 0.1 -7 The limit seems to be exactly -7.
  10. 19.
    h f(a+h)-f(a)h -0.1 4.9 -0.01 4.99 0.01 5.01 0.1 5.1 The limit is approx. 5.
  11. 21.
    h f(a+h)-f(a)h -0.1 29.4 -0.01 29.04 0.01 28.96 0.1 28.6 The limit is approx. 29.
  12. 23.
    h f(a+h)-f(a)h -0.1 -0.998334 -0.01 -0.999983 0.01 -0.999983 0.1 -0.998334 The limit is approx. -1.
  13. 25.
    h f(a+h)-f(a)h -0.1 0.251582 -0.01 0.250156 0.01 0.249844 0.1 0.248457 The limit is approx. 0.25.

Exercises 1.2

  1. 1.

    ϵ should be given first, and the restriction |x-a|<δ implies |f(x)-K|<ϵ, not the other way around.

  2. 3.

    T

  3. 5.

    δ0.45

  4. 7.
    Given ϵ>0, choose δ=ϵ2. |x-4|<δ=ϵ2 |2x-8|<ϵ |(2x+5)-(13)|<ϵ. Thus limx4(2x+5)=13.
  5. 9.
    Given ϵ>0, let δ=ϵ4. Then: |x-5| <δ=ϵ4 4|x-5| <ϵ44 |4x-20| <ϵ |4x-12-8| <ϵ Thus limx5(4x-12)=8.
  6. 11.
    Given ϵ>0, let δ=ϵ7. |x-3|<δ=ϵ7 |x-3|<ϵx+3 |x-3||x+3|<ϵx+3|x+3| Assuming x is near 3, x+3 is positive and we can drop the absolute value signs on the right. |x-3||x+3|<ϵx+3(x+3) |x2-9|<ϵ |(x2-3)-6|<ϵ. Thus, limx3(x2-3)=6.
  7. 13.
    Given ϵ>0, let δ=min{1,ϵ9}. Then: |x-1|<δ |x-1|<ϵ9 |x-1|<ϵ2x+5 |x-1||2x+5|<ϵ2x+5|2x+5|=ϵ |2x2+3x-5|<ϵ |(2x2+3x+1)-6|<ϵ. Thus, limx1(2x2+3x+1)=6.
  8. 15.

    Let ϵ>0 be given. We wish to find δ>0 such that when |x-2|<δ, |f(x)-5|<ϵ. However, since f(x)=5, a constant function, the latter inequality is simply |5-5|<ϵ, which is always true. Thus we can choose any δ we like; we arbitrarily choose δ=ϵ.

  9. 17.
    Given ϵ>0, let δ=min{12,ϵ2}. Then: |x-1|<δ |x-1|<ϵ2 |x-1|<ϵx |x-1|/x<ϵ |(x-1)/x|<ϵ |1-1/x|<ϵ |(1/x)-1|<ϵ, which is what we wanted to prove.

Exercises 1.3

  1. 1.

    Answers will vary.

  2. 3.

    Answers will vary.

  3. 5.

    As x is near 1, both f and g are near 0, but f is approximately twice the size of g. (I.e., f(x)2g(x).)

  4. 7.

    9

  5. 9.

    0

  6. 11.

    3

  7. 13.

    3

  8. 15.

    1

  9. 17.

    0

  10. 19.

    7

  11. 21.

    1/2

  12. 23.

    Limit does not exist

  13. 25.

    2

  14. 27.

    π2+3π+55π2-2π-30.6064

  15. 29.

    -8

  16. 31.

    10

  17. 33.

    -3/2

  18. 35.

    1/6

  19. 37.

    -1/9

  20. 39.

    -8

  21. 41.

    0

  22. 43.

    1

  23. 45.

    0

  24. 47.

    3

  25. 49.

    1

  26. 51.

    4/3

  27. 53.
    (a) Apply Part 1 of Theorem 1.3.1. (b) Apply Theorem 1.3.7; g(x)=xx is the same as g(x)=1 everywhere except at x=0. Thus limx0g(x)=limx01=1. (c) The function f(x) is always 0, so g(f(x)) is never defined as g(x) is not defined at x=0. Therefore the limit does not exist. (d) The theorem requires that limx0g(x) be equal to g(0). They are not equal, so the conditions of the theorem are not satisfied, and hence the theorem is not violated.

Exercises 1.4

  1. 1.

    The function approaches different values from the left and right; the function grows without bound; the function oscillates.

  2. 3.

    F

  3. 5.
    (a) 2 (b) 2 (c) 2 (d) 1 (e) As f is not defined for x<0, this limit is not defined. (f) 1
  4. 7.
    (a) 2 (b) 2 (c) 2 (d) 2
  5. 9.
    (a) 2 (b) 2 (c) 2 (d) 0 (e) 2 (f) 2 (g) 2 (h) Not defined
  6. 11.

    DNE

  7. 13.

    DNE

  8. 15.
    (a) 2 (b) -4 (c) Does not exist. (d) 2
  9. 17.
    (a) 0 (b) 0 (c) 0 (d) 0 (e) 2 (f) 2 (g) 2 (h) 2
  10. 19.
    (a) 1-cos2a=sin2a (b) sin2a (c) sin2a (d) sin2a
  11. 21.
    (a) 4 (b) 4 (c) 4 (d) 3
  12. 23.
    (a) -1 (b) 1 (c) Does not exist (d) 0
  13. 25.

    Answers will vary.

  14. 27.

    Answers will vary.

  15. 29.

    -3/5

  16. 31.

    123

  17. 33.

    -1.63

Exercises 1.5

  1. 1.

    F

  2. 3.

    F

  3. 5.

    F

  4. 7.

    Answers will vary.

  5. 9.
    (a) (b)
  6. 11.
    (a) 1 (b) 0 (c) 1/2 (d) 1/2
  7. 13.
    (a) Limit does not exist (b) Limit does not exist
  8. 15.
    Tables will vary. (a) x f(x) 2.9 -15.1224 2.99 -159.12 2.999 -1599.12 It seems limx3-f(x)=-. (b) x f(x) 3.1 16.8824 3.01 160.88 3.001 1600.88 It seems limx3+f(x)=. (c) It seems limx3f(x) does not exist.
  9. 17.
    Tables will vary. (a) x f(x) 2.9 132.857 2.99 12124.4 It seems limx3-f(x)=. (b) x f(x) 3.1 108.039 3.01 11876.4 It seems limx3+f(x)=. (c) It seems limx3f(x)=.
  10. 19.

    Horizontal asymptote at y=2; vertical asymptotes at x=-5,4.

  11. 21.

    Horizontal asymptote at y=0; vertical asymptotes at x=-1,0.

  12. 23.

    No horizontal or vertical asymptotes.

  13. 25.

    y=2

  14. 27.

  15. 29.

    -

  16. 31.

    -2/3

  17. 33.

    -10/2

  18. 35.

    Let ϵ>0 be given. We wish to find δ>0 such that when |x-1|<δ, |f(x)-3|<ϵ.

    Scratch-Work: Consider |f(x)-3|<ϵ, keeping in mind we want to make a statement about |x-1|:

    |f(x)-3| <ϵ
    |5x-2-3| <ϵ
    |5x-5| <ϵ
    5|x-1| <ϵ
    |x-1| <ϵ5

    suggesting δ=ϵ5.

    Proof: Given ϵ>0, let δ=ϵ5. Then:

    |x-1| <δ
    |x-1| <ϵ5
    5|x-1| <ϵ55
    |5x-5| <ϵ
    |5x-2-3| <ϵ

    Thus limx1(5x-2)=3.

  19. 37.

    1

Exercises 1.6

  1. 1.

    Answers will vary.

  2. 3.

    A root of a function f is a value c such that f(c)=0.

  3. 5.

    F

  4. 7.

    T

  5. 9.

    F

  6. 11.

    No; limx1f(x)=2, while f(1)=1.

  7. 13.

    No; f(1) does not exist.

  8. 15.

    Yes

  9. 17.
    (a) No; limx-2f(x)f(-2) (b) Yes (c) No; f(2) is not defined.
  10. 19.
    (a) Yes (b) Yes
  11. 21.
    (a) Yes (b) Yes
  12. 23.

    (-,)

  13. 25.

    [-2,2]

  14. 27.

    (-,-6][6,)

  15. 29.

    (-,)

  16. 31.

    (0,)

  17. 33.

    (-,0]

  18. 35.

    (-,-4)(-4,2)(2,5)(5,)

  19. 37.

    Yes. The only “questionable” place is at x=3, but the left and right limits agree.

  20. 39.

    Yes, by the Intermediate Value Theorem.

  21. 41.

    We cannot say; the Intermediate Value Theorem only applies to function values between -10 and 10; as 11 is outside this range, we do not know.

  22. 43.

    a=13

  23. 45.

    a=34 and b=-14

  24. 47.

    Answers will vary.

  25. 49.

    Answers will vary.

  26. 51.

    Use the Bisection Method with an appropriate interval.

  27. 53.

    Use the Bisection Method with an appropriate interval.

  28. 55.
    (a) 20 (b) 25 (c) Limit does not exist (d) 25
  29. 57.

    Answers will vary.

Modern Campus CMS